skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Meyers, D"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. We report the observation of an electronic reconstruction in dimensionally controlled ruthenate heterostructures synthesized by pulsed laser deposition. High structural and electronic quality of superlattices comprised of a single SrRuO3 layer inter-spaced with varying thicknesses of insulating SrTiO3 layers was verified by reflection high energy electron diffraction, atomic force microscopy, x-ray diffraction, reciprocal space mapping, and x-ray absorption spectroscopy. X-ray absorption spectroscopy evidences a confinement-driven evolution of the Ru electronic configuration from the d5L to the d4 state. Significant increases of the spin-orbit coupling are observed in connection with the configuration changes supporting recent works identifying large enhancement of the magnetic anisotropy. The growth of high quality two-dimensional confined ruthenate layers under precisely controlled environments highlights the potential to directly manipulate interlayer coupling and selectively perturb the electronic state in ruthenates in analogy to superconducting Sr2RuO4. 
    more » « less
    Free, publicly-accessible full text available December 2, 2025
  2. null (Ed.)